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Abstract
	 Background:	 Gene	 expression	 data	 often	 contain	 missing	 expression	 values.	 Therefore,	
several	imputation	methods	have	been	applied	to	solve	the	missing	values,	which	include	k-nearest	
neighbour	 (kNN),	 local	 least	 squares	 (LLS),	 and	Bayesian	principal	 component	 analysis	 (BPCA).	
However,	 the	effects	of	 these	 imputation	methods	on	 the	modelling	of	 gene	 regulatory	networks	
from	gene	expression	data	have	rarely	been	 investigated	and	analysed	using	a	dynamic	Bayesian	
network	(DBN).
	 Methods:	In	the	present	study,	we	separately	imputed	datasets	of	the	Escherichia coli	S.O.S.	
DNA	repair	pathway	and	the	Saccharomyces	cerevisiae	cell	cycle	pathway	with	kNN,	LLS,	and	BPCA,	
and	subsequently	used	these	to	generate	gene	regulatory	networks	(GRNs)	using	a	discrete	DBN.	We	
made	comparisons	on	the	basis	of	previous	studies	in	order	to	select	the	gene	network	with	the	least	
error.
	 Results:	We	found	that	BPCA	and	LLS	performed	better	on	larger	networks	(based	on	the	
S. cerevisiae dataset),	whereas	kNN	performed	better	on	 smaller	networks	 (based	on	 the E. coli 
dataset).
	 Conclusion:	 The	 results	 suggest	 that	 the	 performance	 of	 each	 imputation	 method	 is											
dependent	on	the	size	of	 the	dataset,	and	this	subsequently	affects	 the	modelling	of	 the	resultant	
GRNs	using	a	DBN.	In	addition,	on	the	basis	of	 these	results,	a	DBN	has	 the	capacity	 to	discover	
potential	edges,	as	well	as	display	interactions,	between	genes.
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Introduction

 Deoxyribonucleic acid (DNA) microarrays 
are extensively used to represent the genetic 
expression of tens of thousands of genes under 
a variety of conditions, as well as in the study of 
many biological processes, varying from human 
tumours (1) to yeast sporulation (2). Several 
statistical, mathematical and machine-learning 
algorithms exploit these data for diagnosis, drug 
discovery, and protein sequencing for example. 
The most commonly used methods include 
data dimension reduction techniques (1), class 
prediction techniques, and clustering methods. 
Consisting of hundreds, or even thousands, of 
gene-specific DNA sequences, gene expression 
microarrays produce massive gene expression 

data sets in the form of large matrices; however, 
some values may be absent. The missing values can 
be due to a variety of factors, such as insufficient 
resolution, image corruption or simply dust or 
scratches on the slide. Moreover, systematic data 
that are missing may also present themselves in 
the robotic method for the generation of gene 
expression profiles (2).
 Repetition of identical experiments has been 
conducted to validate downstream microarray 
analysis algorithms addressing the issue of the 
missing values. However, this is costly and time-
consuming. These methods are widely used by 
biologists, but their disadvantages are obvious: 
omission of the profile vector results in the loss 
of useful information; and padding with zeros 
and row averages does not provide accurate 
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missing value estimation. However, some rather 
sophisticated alternative approaches have been 
proposed (2), and these are based on the k-nearest 
neighbour (kNN) algorithm (kNNimpute) and the 
singular value decomposition (SVD) algorithm 
(SVDimpute). The kNNimpute method aims 
to identify k genes that are very similar to the 
genes with missing values, where the similarity is 
estimated by the Euclidean distance measure, and 
the missing values are imputed with the values of 
weighted average from these neighbouring genes. 
The SVDimpute method obtains a set of mutually 
orthogonal expression patterns (eigengenes) 
from the gene expression matrix, and imputes 
the missing values by regressing the gene against 
the k eigengenes and then linearly combining the 
eigengenes. 
 Oba et al. (3) recently developed an 
optimisation method based on Bayesian principal 
component analysis (BPCA), which outperforms 
the kNNimpute and SVDimpute methods. One of 
the features of BPCA that allows it to provide a 
better performance than the latter two methods 
is its capacity to auto-select the parameters used 
in the estimation. This method also produces 
an improved estimation performance when the 
number of the samples is huge. Kim et al. (4) 
also proposed a method, based on local least 
squares (LLS; LLSimpute), which exploited the 
local similarity structures in the data, as well as 
the least squares optimisation process. However, 
some of these methods do not make the most use 
of missing values in one row of certain expression 
profiles (see Methods section), such that other 
missing values are just excluded, or padded 
with zeros or row averages in the estimation. 
Despite this, the effects of imputation methods 
on the modelling of gene regulatory networks 
(GRNs) from gene expression data have been 
rarely investigated and analysed using a dynamic 
Bayesian network (DBN). In this paper, we 
assessed gene expression data obtained from 
Escherichia	 coli	 and Saccharomyces	 cerevisiae 
with a variety of parameter settings. With regard 
to the performance outcome, we used the kNN, 
BPCA, and LLS impute methods and investigated 
their effects on the resultant GRNs, by comparing 
them with the results of previous studies.

Materials and Methods

 Here, we describe the details of each 
method we used in this study. In essence, the 
gene network construction steps include missing 
values imputation, discretisation of the dataset, 
and modelling of GRNs using a DBN.

Missing	Values	Imputation	and	Discretisation									
of	Dataset
 This experimental study was based on E. 
coli SOS DNA repair network gene expression 
data (5) and S.	 cerevisiae cell cycle time-series 
gene expression data (6). The former include the 
expression kinetics of the primary eight genes 
of the SOS DNA repair network of E.	 coli (the 
dataset is available at http://www.weizmann.
ac.il/mcb/UriAlon/), and this well-known gene 
network is responsible for repairing the DNA 
after damage. Initial measurements are taken 
after irradiation the DNA with ultraviolet (UV) 
light, and four experiments are conducted using 
various light intensities. Each experiment consists 
of 50 instants that are evenly spaced at 6 minutes 
intervals, and eight genes are monitored: uvrD,	
lexA,	 umuD,	 recA,	 uvrA,	 uvrY,	 ruvA	 and polB. 
Conversely, the S.	 cerevisiae cell cycle pathway 
gene expression data (the dataset is available at 
http://genome-www.stanford.edu/cellcycle/
data/rawdata) consists of 6178 genes observed 
through three different condition-specific 
experiments, namely, factor arrest, elutriation, 
and temperature-induced arrest of mutant. The 
missing values found in gene expression data can 
influence a significant amount of genes, thereby 
negatively impacting subsequent downstream 
analysis and experiments (7). In this study, the E.	
coli S.O.S. DNA Repair network gene expression 
data contains 11.5% missing values (184 out of 
1600 observations) while the S.	 cerevisiae	 gene 
expression data contains 5.9% missing values 
(28127 out of 475706 observations). To tackle this 
problem, we imputed the experimental data before 
discretisation using three different imputation 
methods; kNN (natively available in MATLAB 
Bioinformatics Toolbox), LLS (available at http://
www.cc.gatech.edu/~hpark/software), and 
BPCA (available at http://hawaii.sys.i.kyoto-u.
ac.jp/~oba/tools).
 kNN-based methods tend to select genes 
with expression profiles similar to the gene of 
interest to impute missing values (2). Consider 
that gene A has one missing value in experiment 1; 
this method would find other k genes, which have 
a value present in experiment 1, with expression 
most similar to A in experiments 2–N (where N 
is the total number of experiments). A weighted 
average of values in experiment 1 from the closest 
k genes is then used as an estimate for the missing 
value in gene A. In the weighted average, the 
contribution of each gene is weighted by similarity 
of its expression to that of gene A. Conversely, 
BPCA uses a Bayesian estimation algorithm to 
predict missing values (8), and suggests using 
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the number of samples minus 1 as the number of 
principal axes. The missing values estimation, or 
imputation method, based on BPCA consists of 
three processes: principal component regression, 
Bayesian estimation, and an expectation-
maximisation-like repetitive algorithm. In the 
LLS method, a target gene that has missing values 
is represented as a linear combination of similar 
genes. Rather than using all available genes in 
the data, only similar genes, based on a similarity 
measure, are used. There are basically two steps 
in LLS imputation; the first of these is to select k 
genes by the L2 -norm or by Pearson’s correlation 
coefficients, and the second is regression and 
estimation to impute missing values, regardless 
of how the k genes are selected (8).
 Discretisation is applied to the experimental 
data, as it offers robustness and simplicity of 
learning (9). In the present study, we discretised 
the experimental data into three classes (up-
regulation, down-regulation, and normal), on the 
basis of the expression rate, and determined the 
threshold value for discretisation by using the 
baseline cut-off of gene expression values (10).

A	Dynamic	Bayesian	Network
 A DBN is essentially an extension of a 
Bayesian network; it extends the latter’s capacity 
to address the temporal aspect of a stochastic 
network. In general, a DBN represents sequences 
of variables. These sequences are often time-
series (i.e. in speech recognition) or sequences of 
symbols (i.e. protein sequences). A DBN is defined 
as a pair (B0, B ↓ ), where B0 defines the prior P 
(Z1), and is a two-slice temporal Bayes net, which 
defines P (Zt | Zt-1) by means of a directed acyclic 
graph, as follows:

  However, a discrete DBN (dDBN) is a DBN 
specialisation that models temporal processes. 
Its graphical topology is divided into columns of 
nodes, such that each column represents a time 
frame. Each random variable is represented by 
one node in each of the columns. Links are allowed 
to connect nodes between columns, provided the 
link points forward in time. Ideally, there would 
be one column for every time frame and links 
could connect nodes separated by arbitrary time 
steps (including nodes in the same time frame). 
However, such dDBNs are intractably large, 
and require far more data and computational 
resources to learn than are likely to be available.

(1)

Results

 We compared the resultant GRNs for the 
E.	 coli dataset with the well-known E. coli SOS 
DNA repair network (11), and compared the 
inferred GRNs for the S.	cerevisiae dataset with 
the established S.	 cerevisiae	 cell cycle pathway 
at Kyoto Encyclopedia of Genes and Genomes 
(KEGG) (http://www.kegg.jp), as well as the 
results obtained by Dejori (12). The S.	cerevisiae	
cell cycle sub-networks that we chose for 
comparison were the YOR263C and the YPL256C 
sub-networks. An edge signifies the existence 
of a relationship between the two connected 
genes, a cross attached to the edge represents an 
incorrect inference and an edge without any add-
on is a correct inference. Sensitivity relates to the 
capacity of the test to identify positive results, and 
specificity indicates the test’s capacity to identify 
negative results.
 Table 1 shows the sensitivity and specificity 
of the E.	coli	SOS DNA repair network constructed 
by using a DBN with different imputation 
methods. We calculated sensitivity and specificity 
by comparing the established E.	 coli SOS DNA 
repair network (Figure 1) and the resultant 
GRNs from the E.	coli	SOS DNA repair network 
gene expression data (Figure 2). The imputation 
method with the highest sensitivity and specificity 
was kNN, which had a sensitivity of 70% and a 
specificity of 88.89%. The BPCA method produced 
the lowest sensitivity value, as well as the lowest 
specificity value, these being 63.64% and 78.05%, 
respectively. With 63.64% sensitivity and 83.72% 
specificity, LLS performed better than BPCA, but 
worse than kNN.
 Table 2 summarises the sensitivity and 
specificity of the S.	 cerevisiae YOR263C sub-
network inferred by using DBN with different 
imputation methods. We calculated the sensitivity 
and specificity by comparing the S.	cerevisiae	cell 

Table	 1: The sensitivity and specificity of the 
E.	 coli SOS DNA Repair network 
constructed by using DBN with 
different imputation methods

Imputation	
Methods

Sensitivity Specificity

kNN 70.00% 88.89%
BPCA 63.64% 78.05%
LLS 63.64% 83.72%
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Figure	1:	SOS DNA Repair network (11).

Table	 2: The sensitivity and specificity of S.	
cerevisiae YOR263C sub-network 
constructed by using DBN with 
different imputation methods

Imputation	
Methods

Sensitivity Specificity

kNN 83.33% 92.86%
BPCA 71.42% 92.86%
LLS 83.33% 80.00%

Table	 3: The sensitivity and specificity of S.	
cerevisiae	 YPL256C sub-network 
constructed by using DBN with 
different imputation methods

Imputation	
Methods

Sensitivity Specificity

kNN 44.44% 84.96%
BPCA 66.67% 82.18%
LLS 66.67% 82.18%

Figure	2: SOS DNA Repair network constructed with: left – BPCA, middle – kNN, right – LLS imputation 
method.

cycle pathway at KEGG, and the results obtained 
by Dejori (12) (Figure 3), with the resultant GRNs 
from the	 S.	 cerevisiae	 cell cycle pathway gene 
expression data (Figure 4). Again, kNN registered 
the highest sensitivity and specificity, at 83.33% 
and 92.86%, respectively. LLS performed 
relatively competitively against kNN, it recorded 
a sensitivity of 83.33% and specificity of 80.00%, 
while BPCA produced the lowest sensitivity at 
71.42%, but achieved a specificity of 92.86%. 
Table 3 shows the sensitivity and specificity of the 
S.	 cerevisiae YPL256C sub-network constructed 
by using DBN with different imputation methods. 
Again, the resultant GRNs (Figure 6) were 
compared with the pathway at KEGG and the 

results obtained by Dejori (12) (Figure 5). With 
regard to kNN, the sensitivity was 44.44% while 
the specificity was 84.96%. Both BPCA and LLS 
achieved the same sensitivity and specificity of 
66.67% and 82.18%, respectively.

Discussion

Escherichia	coli	S.O.S.	DNA	repair	network
 The entire system is composed of 
approximately 30 genes regulated at the 
transcriptional level. Usually, when no DNA 
damage occurs, a master transcription factor, 
LexA, binds sites in the promoter regions of these 
genes, repressing all genes in the network. One of 
the SOS proteins, RecA, acts as a sensor to DNA 
damage: by binding to single-stranded DNA; it 
becomes activated and mediates LexA	destruction. 
The drop in LexA levels causes the de-repression 
of SOS genes. Once damage has been repaired or 
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Figure	3:	YOR263C sub-network (12).

Figure	4:	YOR263C sub-network constructed with: left – kNN, middle – BPCA, right–LLS imputation 
method.

Figure	5:	YPL256C sub-network (12).

Figure	6:	YPL256C sub-network constructed with: left – BPCA, middle – kNN, right–LLS imputation 
method.

bypassed, the level of activated	RecA	drops,	LexA	
then accumulates and represses the SOS	 genes, 
and cells return to their initial state (13).
 The method that produces the highest 
sensitivity and specificity was the most suitable for 
our experiment, and Table 1 shows that this was 
kNN. kNN produces a lower error rate than BPCA 
and LLS; with high sensitivity, kNN results in a 
low number of type II errors, or false negatives, 

while high specificity means a low number of type 
I errors, or false positives. We used a relatively 
small E.	coli dataset, and this favoured the kNN 
method in imputing the missing values. However, 
if the datasets are too large or too small, kNN 
method will perform poorly. BPCA did not perform 
well in this experiment, because of the size of the 
dataset; it is a global method that favours large 
datasets (3). Conversely, LLS is a very simple 
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method to apply because it does not produce any 
computational burdens, unlike BPCA. 

Saccharomyces	cerevisiae	YOR263C	Sub-
network
 The edges between YOR263C and YOR264W 
were the most conspicuous features in the sub-
network. This is primarily because both genes are 
located adjacent to one another on the DNA strand 
of chromosome XV. However, the biological and 
molecular functions of both genes are unknown. 
Another feature with a high confidence level is 
the edges between YNR067C and YGL028C. The 
function of YNR067C is currently unknown, while 
YGL028C is known to function as a soluble cell wall 
protein. It has a connection with YER124C, but 
the function of YER124C is unknown. YGL028C 
is also related to YLR286C, an endochitinase 
that is involved in cell wall biogenesis. These 
two nodes (genes) are again connected by edges 
of high confidence. Since YER124C has directed 
edges with two nodes (YLR286C and YGL028C) 
and both nodes are functionally related to cell 
wall biogenesis, it can be assumed that it is also 
involved in cell wall biogenesis. Therefore, this 
gene network, which we constructed using a DBN, 
has provided a testable prediction of an unknown 
gene function.
 The main difference between the sub-
networks constructed by Dejori (12) and those 
used our research is that the edges in the network 
we constructed were directed, and they more 
clearly show the interactions between genes. For 
example, the edge formed between YOR263C and 
YOR264W in a sub-network constructed by Dejori 
(12) could not show which gene is regulating which 
other. However, the network we formed clearly 
showed that YOR263C was regulating YOR264W 
and vice versa. This means that the expression 
level of YOR264W depends on YOR263C, as well 
as on YNR067C.

Saccharomyces	cerevisiae	YPL256C	Sub-
network
 Both BPCA and LLS produced a higher 
sensitivity and specificity rate than did kNN , 
proving that, in this sub-network dataset, BPCA 
and LLS outperformed kNN, producing more 
accurate gene networks with lower error rates. 
The performance of kNN was mainly influenced 
by the size of the YPL256C sub-network, which 
is relatively large compared to the YOR263C 
sub-network. On the basis of our results, BPCA 
and LLS would be preferable in handling larger 
datasets.
 There was one directed edge from gene 

YIL066C to gene YPL256C. This means that there 
is a causal dependency between these two genes. 
YPL256C encodes for G1-cyclin, which is involved 
in the regulation of the cell cycle, while YIL066C 
is involved in DNA replication, which occurs in 
the S-phase. Therefore, a causal dependence with 
regard to YIL066C and YPL256C is biologically 
logical, since their functions are correlated. 
YDR146C encodes for a transcription factor that 
activates transcription of genes expressed at the 
M/G1 boundary and in the G1 phase of the cell 
cycle. YDR146C regulates YHR023W, which 
encodes a protein that plays a non-essential role 
in cytokinesis in the M phase. An unexpected 
finding is that gene YGR108W did not form any 
edges with other nodes, which is in direct contrast 
to the results of a study conducted by Spellman et	
al. (6). The number of edges we found is almost 
three times higher than was observed by Dejori 
(12). In addition, all the edges in the network we 
developed through our research had at least one 
directed edge with other nodes. However, Dejori 
(12) failed to find or construct any edge for one 
node; YGR108W. This suggests that the DBN we 
implemented is capable of predicting and forming 
a greater number of  potential edges between 
genes in a sub-network.
 We captured 20 new edges between nodes 
that Dejori (12) was unable to capture. The new 
edges are shown in Figure 6, and they are edges 
without any attachment. One of the new edges 
that we discovered is from gene YLR131C to gene 
YMR001C. YLR131C encodes the transcription 
factor that activates transcription of genes 
expressed in the G1 phase of the cell cycle. 
Conversely, YMR001C encodes a protein that is 
involved in the regulation of DNA replication. 
Therefore, YLR131C is likely to regulate YMR001C. 

Conclusions

 In this study, we probed the effects of 
imputation methods for GRNs modelling using 
a DBN based on two different gene expression 
datasets, namely the E.	 coli SOS DNA repair 
network and the S.	cerevisiae cell cycle pathway. 
We observed and analysed the effects and 
influence of the BPCA, kNN and LLS imputation 
methods on the resultant GRNs, and found 
that kNN outperforms BPCA and LLS with 
relatively small size datasets, as it produced 
the highest sensitivity and specificity for both 
the	 E.	 coli	SOS DNA repair network and the S.	
cerevisiae YOR263C sub-network. However, 
its performance dropped drastically when the 
size of the dataset increased. In contrast, BPCA 
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was outperformed by kNN and LLS on smaller 
networks, but maintained its performance on the 
larger YPL256C sub-network. In addition, LLS 
produced the most consistent performance on all 
three datasets. Although it did not particularly 
excel in any of the three experiments, it did 
produce relatively competitive results compared 
with the other imputation methods. Our results 
also suggest that the performance of imputation 
methods is influenced by the characteristics of the 
dataset, that is, its size and complexity, which in 
turn influences the resultant GRNs. Moreover, 
based on the resultant GRNs, it is shown that a 
DBN is capable of uncovering potential edges or 
interactions between genes, for example, two-
way interactions. Further research must also be 
conducted with regard to the effects of imputation 
methods on modelling GRNs using a DBN. For 
example, expanding the selection of imputation 
methods and using other gene expression data, 
such as Arabidopsis	thaliana.
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